
PERMEABILITY OF POROUS MATERIALS 

D. P. Volkov UDC 539.217 

A structural model and an approximate method for calculating the permeability of 
porous materials are proposed. 

We will examine the laminar flow of a viscous fluid in a porous medium caused by a pres- 
sure gradient. In accordance with Darcy's law, let the volumetric flow rate of the fluid in 
a layer of the porous material (Fig. la) be proportional to the permeability k, the pressure 
drop Ap over the length L, and the section S = lh and inversely proportional to the dynamic 
viscosity of the fluid ~: 

S A p  
q = k (1 )  

L 

We will examine a mixture of two porous materials with known permeabilities kx and ka 
and volume concentrations m: and m2, where m~ + m= = i. We will prove that it is possible 
to calculate the effective permeability k = f(k:, k2, me) for different structures of mixtures. 
For this purpose, we first investigate the simplest combinations of structures and then pro- 
ceed to more complex combinations. 

We will begin the analysis with adjacent "butts" of porous materials (Fig. ib) for which, 
on the basis of Eq. (I), the following relations are valid 

k, th lh 
q - -  Apt = - -  m �9 (2) 

~t Ll ~t L o 

From Eq. (2), it is not difficult to find the total pressure drop Ap over the length L = L~ + 
L~: 

Ap : Ap~ + AP2 -- q~t ( ' L~-ki + L~ . 
lh " k~ ( 3 ) 

We substitute for the system of bodies (Fig. ib) a quasiuniform body with a transverse sec- 
tion lh, length L, pressure drop Ap = Ap~ + Apt , and effective permeability k. Equation (i) 
is valid for such a body, and in comparing Eqs. (i) and (3) we find 

�9 1 mt  m .  t~  Vi 
- -  " , m i - -  ---- ( i =  1, 2 ) .  (4) 

k k~ + k2 L V 

For a system in which the layers are parallel to each other and the flow (Fig. Ic), 
assuming that the total flow is equal to the sum of the flows q = qt + q2, we obtain the 
following expression for the effective permeability 

k = k i m t + k 2 m 2 ,  t n ~ -  hl Vi ( i - -  I ,  2). 
- - - h - - -  V ( 5 )  

It is not difficult to obtain the following relation for k for the system shown in Fig. 
id: 

k = klm l + k2m2 , mi 
li Vi 

l V 
(i = 1, 2). ( 6 )  

It is known that the thermal R t and electrical R e resistances for a parallelepiped of 
length L, width l, and height h are determined from the formulas 

R t  _ L R e  - L ( 7 )  
hl~ ' hla 
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Fig. i. Layer arrangements for calculating the 
permeability of elementary systems. 

By analogy with the above, we introduce the concept of the filtration resistance of the sys- 
tem 

L 
R f  --  h lk /~  (8) 

Given this, Eq~ (4) represents the ease of serial Rf = Rf~ + Rfa, and Eqs. (5) and (6) repre- 

sent parallel connection of the filtration resistances R~ I = R~ + R~. Thus, Kirchhoff's 
laws for circuits can be used in calculating the filtration resistance of an inhomogeneous 
porous system. 

Let us now examine a structure in which a change in the concentration of the components 
is accompanied by a transition from a structure with isolated impregnations to a structure 
with mutually penetrating components. The general topological pattern of structural change in 
a heterogeneous system accompanying a change in the concentration of the components has become 
clear from studies in flow theory (or percolation theory) [i, 2]. It follows from flow theory 
that, at small values of porosity me, the pores in the material are either isolated or are in 
the form of isolated accumulations or "clusters." Large pore accumulations appear as ma in- 
creases and these larger accumulations, together with the small accumulations, form so- 
called isolated clusters (IC). When the porosity becomes equal to the critical value 
mc, the IC merge and form the so-called infinite cluster (FC), and the system becomes 

conductive. With a further increase in m~ > m c, the FC enlarge and pores permeate the entire 
system, forming the structure with mutually penetrating components. The value of ma = m c is 
called the flow threshold. When ma = m c, the permeability of porous materials "jumps" from 
zero to a certain value, then changing monotonically with an increase in porosity. This jump 
in permeability was observed experimentally by Tertsagi [3] in studying the permeability of 
porous materials. He empirically determined that permeability is nearly zero at a porosity 
m2 < 13%. 

The author of [4] described a model constructed using the method of combining flow theory 
with reduction to a unit cell. We will use this model (Fig. 2a) to calculate the permeability 
of porous materials. Here, isolated clusters (pores) are modeled by individual cubical inclu- 
sions (side ~2). The IC's are connected to each other by conductive links with a cross sec- 
tion 11, The topology Of the model changes with an increase in m=: at low porosities ma < mc, 
the system contains closed inclusions (IC's) (Fig. 2c). The first links between the IC's then 
begin to appear. A further increase in porosity ma leads to an increase in the area of the 
cross section ~ of the links until the values of 11 and la are equal (me = 0.5) and the 
heterogeneous system is transformed into a structure with mutually penetrating components 
(Fig. 2d). The following relation can be used to express the law of change in the effective 
cross section S~ of the conductive FC, allowing here for both the complex topology of the FC 
and the probability nature of its formation 

S t  = - -  = 0 . 2 5  , ( 9 )  
0~5 - -  m e 
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Fig. 2. Generalized model of a heterogeneous sys- 
tem: a) general view (at m2 > mc); b) equivalent 
circuit of filtration resistances; c) model of iso- 
lated cluster (m, ~ mc); d) model with mutually 
penetrating components. 

where m c = 0.15 • 0.03; t = 1.8 • 0.2 [2, 5]. For subsequent calculations, we will take 
m c = 0.15 and t = 1.6. 

Let us analyze the fluid transport process in the unit cell (Fig. 2a). We will intro- 
duce the notions of "pore permeability" ka and "shell permeability" kx, with kx = 0. We will 
divide the shell into separate sections consisting of surfaces which are impermeable for the 
streamlines and are parallel to the general direction of fluid flow and the lateral faces of 
the cell. Having written down the values of the filtration resistances of these sections, a 
circuit diagram of which is shown in Fig. 2b, we obtain a formula for calculating the perme- 
ability of porous materials on the basis of the above model under the condition that the 
"shell permeability" kl = 0: 

k = k ~ c  ~, c - -  It 
- - - - - f - ,  (1o) 

at t n e < m ~ < 0 . 5  c=0.5(  m2--m~ ) ~ 
0,5 - -  m e (ii) 

at 0,5<m2~I,0 2c3--3 ~q-m2 = 0. 

We now find the "pore permeability" ka on the basis of the following considerations. The 
rate of flow of a fluid through capillary tubes is given by the Hagen--Poiseuille law 

q = S ~ 6 % ~ ( 3 2  ~ i  O, (12) 

where 6, Sx = Z~ are the diameter and cross-sectlonal area of the capillary tube (FC); Lx is 
the length of the capillary tube (FC) or the length of the path of a fluid particle in a 
sample (unit cell). On the other hand, the rate of flow of the fluid through the unit cell 
can be found from Darcy's law (i). In this case, L and S = L s are the thickness and cross 
sectional area of the unit cell. Equating Eqs. (i) and (2), we obtain an expression for k 
of the unit cell: 

32 Li S 32 L 2 

where x = Lx/L is the sinuousness of the pore (FC). 
(i0) and (13) that the "pore permeability" 

k2 = 5z/(32 x). 

L 
- - = - -  c ~, (13) i i  32 

It is apparent from a comparison of Eqs. 

(14) 
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Fig. 3. Connection between sinuousness coefficient 
and porosity: i) experimental data [7-10]; 2) data 
calculated from Eq. (16). 

Conducting experiments with a computer in [6], investigators developed qualitative and 
quantitative representations of characteristic lengths of an infinite cluster and obtained 
an expression for the sinuousness of an FC 

Li 4 
T - - -  -(m2--mc) -~ (15) 

L 

The sinuousness of the FC decreases with an increase in m2 and must equal unity at m2 = i. 
To satisfy this condition, we convert Eq. (15) to the form 

L~ ( l--me )~ 
-- L m~------m--~ (16) 

It is noted in [6] that even at very low m2 -- m c within the range 0.001 < ma -- mc < 0.01, the 
mean length of an FC is altogether three times greater than the length of the sample. In 
accordance with this and experimental data on pore sinuousness [7-10], we will assume that 
T = coast at m c < m2 ~ 0.2 and that it obeys Eq. (16) at m2 > 0.2 (Fig. 3). 

Equation (13) includes the capillary-tube diameter 6, which is not known in most cases. 
We may take the mean distance between fibers as the mean capillary-tube (pore) diameter for 
fibrous materials. The distance between fibers depends on the size of the fibers in cross 
section and the porosity of the material. We will express the mean pore diameter through 
the diameter of the fibers d. It will be assumed that 

l i  = 6, L - - l i  = d. (17) 
The parameters of the unit cell l~, c, and L are connected by the relation l~/L = c, so that 
L = l~/c = 6/c. On the basis of the last expression and Eqs. (17), we find the mean distance 
between the beams in the shell (the pore diameter): 

From the equality of the areas of the cross sections of cylindrical and square fibers, we 
obtain the final expression for the mean pore diameter: 

( ) 6 0 ,886d  1 - - 1  , ( 1 8 )  
C 

where c is determined from (ii). 

We will check the applicability of the above model and the formula obtained with it to 
the calculation of the gas permeability of sintered fibrous materials used for lamp elec- 
trodes [11-13]. Results of calculation of permeability by Eq. (10) are compared with experi- 
mental results in Fig. 4. The theoretical results agree well both qualitatively and quanti- 
tatively with the empirical data. The divergence of the former from the latter for 38 points 
is 32%, with a confidence level p = 0.67. 

It is thus apparent that permeability must be determined by the geometry of the pore 
structure of a material. Many attempts have been made to develop a theory connecting pore 
structure geometry with permeability. Sheidegger made a very thorough survey of these 
theories in [14]. The most widely adopted models are those in which the porous medium is 
represented as a bundle of parallel capillary tubes of equal length. In reality, the pore 
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Fig. 4. Comparison of experimental and theoretical 
results: i) experiment [12]; 2) estimate from Eq. 
(i0); 3, 4) experiment [ii, 13]; 5) estimate from 
Eq. (i0). k, m s. 

structure of materials is much more complicated. Thus, this work has examined a new model 
based on flow theory with allowance for the complex geometry of pores and the probability 
nature of their formation. 

NOTATION 

q, volumetric flow rate of fluid; ~, h, L, S, width, thickness, length, and cross- 
sectional area of material; Ap, pressure drop; ~, coefficient of absolute viscosity; k, k:, 
k2, permeabilities; m~, m2, volume concentrations of components; Rt, Re, Rf, thermal, elec- 
trical, and filtration resistances; I, ~, thermal and electrical conductivities; c, param- 
eter; 6, mean pore diameter; m, sinuousness; d, fiber diameter. 
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HEAT EXCHANGE IN POROUS MEDIA 

B. M. Galitseiskii and A. N. Ushakov UDC 536.24 

Results are offered from an experimental study of the heat-exchange process in 
porous materials and the effect on this process of high-frequency oscillations 
in the heat-exchange fluid flow. 

The study of heat exchange and its intensification in porous materials is a problem of 
practical interest, inasmuch as such materials are finding ever wider use as construction 
materials for surfaces drafted by high-temperature flows. Both stationary and nonstationary 
heat-exchange processes in porous materials are of great interest. 

The goal of the present study is to examine the heat-exchange process in porous materials 
and the effect upon this process of high-frequency oscillations in the heat-exchange fluid 
flow. 

The one-dimensional method of describing the heat-exchange process in porous structures 
will be used. For a plate of porosity ~ with internal heat source qv the problem reduces to 
solution of the thermal balance equations 

d2T~ GC v dT s q ~ ( 1 - - ~ )  
dx z F x ~  dx ~ ~M - -  O, (i) 

GCp dTf (2) 
Fz dx -- ~* ( T ~ - -  Tj), 

where H is the porosity, defined as the ratio of the pore volume to the total plate volume, 
and a v is the heat-liberation coefficient, characterizing the heat produced per unit volume 
of the porous material. 

Up to the present most authors have studied the mean heat liberation coefficient without 
consideration of the effect of heat exchange on the specimen boundaries. Results as to the 
effect of boundary conditions on the heat-liberation coefficient in porous structures av are 
extremely contradictory. According to [1-3], heat exchange at the boundaries of a porous 
specimen does not affect heat exchange within the pores, while according to [4] and [5], this 
effect can be significant. In connection with this fact, in the present study the effect of 
heat exchange at the specimen boundaries on hsat exchange within the porous structure was 
considered in addition to a study without consideration of heat exchange at the boundaries. 
For this purpose two variants of boundary conditions were considered for Eqs. (i), (2). 

In the first variant heat exchange at the specimen boundaries was ignored, and the 
boundary conditions had the following form: 

ax (3) 
dT w 

x=6 ,  ~ d---~-- 

In the second variant heat exchange at the input (the boundary where coolant enters) boundary 
was considered, and the boundary conditions had the form 

x = O, ~M -- dTw 
dx --  ~in ( T ~ - -  Tfo), (4) 
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